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Abstract
There has been increased theoretical and experimental research interest in
autonomous mobile robots exhibiting cooperative behaviour. This paper
provides consistent quantitative measures of organizational degree of a two-
dimensional environment. We proved, by the way of numerical simulations,
that the theoretically derived values of the feature are reliable measures of
aggregation degree. The slope of the feature’s dependence on memory radius
leads to an optimization criterion for stochastic functional self-organization.
We also described the intellectual heritages that have guided our research, as
well as possible future developments.

PACS numbers: 05.65.+b, 05.45.−a, 64.60.−I, 87.10.+e

1. Introduction

The coherent behaviour displayed for the transport task observed in social insects can be
attributed to the common goal shared by the individuals along with an identical set of
interaction rules. Seeley noted this effect while considering the collective decision making in
honeybees [39]. By way of the social insects, nature is showing us how to build decentralized
and distributed systems that are autonomous and capable of accomplishing tasks through
the interaction of many simple and highly redundant agents. From their local perception
to the mass effect that results in a global action these biological systems serve to elucidate
the mechanisms thought to be at the heart of self-organizing behaviour, sometimes called
stigmergic self-organization or swarm intelligence.

Stigmergy, as proposed by Grasse [21], is a model used to explain the regulation of
building behaviour in termites. Stigmergy theory holds that transitions between sequences
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of construction steps are regulated by the effect of previous steps. In more general terms,
the theory has been used to explain and describe the process by which task activity can be
regulated using only local perception and indirect communication through the environment as
applied to algorithms for coordinating distributed building behaviour [40] and foraging tasks
by multi-robot systems [4]. Deneubourg [11] showed that chemical cues could organize part
of the building activities of termites through a self-organizing stigmergic process. In this
case, the stimuli encountered by the termites (concentrations of construction pheromones)
differ quantitatively. There seem to be other cases where the stimulating patterns of matter
perceived by the insects, such as wasps, undergo qualitative changes [14, 25, 40].

The collective behaviour of ants, bees, and other eusocial insects [15, 28] provide striking
existence proofs that systems composed of simple agents can accomplish sophisticated tasks
in the real world. It is widely believed that the cognitive capabilities of these insects
are very limited, and the complex behaviour is emergent out of interaction between the
agents. Therefore, the purpose of modelling multiagent systems is twofold. It leads to
a deeper understanding of social insects behaviour and provides a decentralized, efficient,
approaches on robots task allocation [38, 41]. There is no consensus about the meaning
of cooperative behaviour in robotics. There are definitions that take into account the goal
[5], the communication strategy [27], the optimization of a global characteristic [37],
etc. Cooperative robotics already developed few successful hardware/software models
such as CEBOTS (CEllular roBOTics System) [17–19], ACTRESS (ACTor-based Robot
and Equipments Synthesis System) [2, 3], SWARM [24], GOFER [9, 26], ALLIANCE/L-
ALLIANCE [34, 35], etc. The motivation of our studies is twofold. First, there is a noticeable
gap in the literature of cooperative robots regarding formal metrics for cooperation and system
performance. While the notion of cooperation is difficult to formalize, such metrics will be
very useful in characterizing the nature of agent interactions. Second, experimental studies
might become more rigorous and thorough, for example, via standard benchmark problems
and algorithms. It is necessary for claims about ‘robustness’ and ‘near-optimality’ to be
appropriately quantified, and for dependences on various control parameters to be better
understood [10].

The present study emphasizes that the mechanism of functional self-organization is the
indirect communication between the autonomous agents through the environmental changes
they operate. This stigmergic self-organization can be optimized in terms of required time
steps to achieve a goal. In this study, the goal is to sort and make piles of different object-
types. In order to compare models and/or sorting strategies we need a measure of ‘goodness’.
Among many possible choices we focus our interest in texture analyses. We found that three
so-called features, used in the field of image processing, are suitable to provide quantitative
measures of ‘goodness’ [6, 22, 23]1.

2. Functional self-organization concept

The environment is modelled as a periodic two-dimensional lattice. Each lattice site has one
of a finite number of distinct states. Usually, the number of states is small but, in principle,
any finite cellular automata (CA) model over a finite alphabet can be defined. The state of a
cell (site) changes according to specific local rules. There are two distinct classes of automata:
synchronous, which allows simultaneous update of the states for all cells at a time and
asynchronous, which allows gradual update of states. The updating order can be deterministic
or random in the case of asynchronous update model. The space and time discrete model above

1 A proof of the theorem in the unpublished reference [22] is given in [6]
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decribed is called cellular automata [29, 36]. The dynamics of CAs are essentially determined
by the considered neighbourhood. There is an increasing interest in CA models of physical
phenomena due to the simplicity of computational tasks and the great flexibility of models. A
burgeoning branch of dynamical systems theory studies the emergence of well-characterized
collective phenomena in systems consisting of a large number of individuals connected by
non-linear couplings [16, 32].

2.1. Fix length and equally weighted memory registers

Deneubourg et al [11–13] introduced a theoretical model in order to explain the organizing
capability of living things based on experimental observations of the collective behaviour
in ants. The model mimics the ants’ behaviour by most rudimentary perceptual, motor
and strategic mechanisms. The main features of the Deneubourg et al [11–13] model are
summarized in the following requirements: (1) every ant (or robot-like-ant (RLA)) has the
capability to recognize the distributed objects and record, in its finite length memory register,
the most recent encountered object-type; (2) RLAs have object-manipulation capacity, the
capacity to pick up, transport and put down objects; (3) RLAs execute a Brownian motion.
The memory is a shift register of fix length n, which records the presence (‘1’) or absence
(‘0’) of a specified object-type at the RLS’s previous location. The most recent object-type
encountered is memorized on the most significant bit place by shifting the old record with one
place and remove the oldest entry in the register (the least significant bit). At every time step,
every RLA generate a random number p obtained from a uniform distribution, and manipulates
the objects (pick-up and put them down) as a function of p and a threshold (see [11–13] for
mathematical details). The multirobotic network based on these rules has the capability to
sort objects into piles by their specific property (‘colour’). This sorting behaviour is emergent
meaning that the RLAs are not explicitly programmed to sort the objects in order to form
clusters.

2.2. The weighted memory model of functional self-organization

The above-cited model does not perform very well when the concentration of the objects is
low (less than 1%). Moreover, the finite length of the memory and the equal weights given to
all the recorded events determines wrong decisions and slows down the computation.

Our new model of stochastic functional self-organization(SFSO) is based on the following
assumptions [30, 31]: (1) The lattice sites are occupied by physical objects, denoted by a, b,
c, . . . A free site is occupied by a φ object-type; (2) At any moment an RLA carries an object.
The transported object may be of φ-type (free robot). The robots move randomly through the
lattice, only one robot being allowed at one site; (3) When a robot moves to a given site it
must decide if there are conditions to put down the carrying object and to pick up the existing
one. The swapping condition is

fα � fβ (1)

where fα is the weighted frequency of the carried α-type object, and fβ is the weighted
frequency of the encountered, β-type object. According to our newly proposed algorithm
[30, 31], if the carried object was met more frequently than the encountered one then the RLA
decides to swap the two objects. For example, let us refer to the following memorized string

⇓ the most recent entry in the memory
(2)

sτ: b b b b b a a a a a
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which indicates that the RLA has met five a-type objects and five b-type objects in the past.
In order to simplify the numerical evaluations, any RLA associates a binary string to every
object-type. Therefore, using the string (2) as an example, the binary string associated to
a-type object is

sa: 0 0 0 0 0 1 1 1 1 1. (3)

Generally specking, a binary string of length τ associated to an arbitrary α-type object has the
form

sα,τ: uα,1 uα,2 · · · uα,τ (4)

where

uα,i =
{

1 if α-type object was encountered at the step i

0 otherwise.
(5)

Based on (4) and (5), the following conservation rules take place:
∑τ

i=1 uα,i = nα, for any
α = 1, T , where nα is the total number of α-type objects encountered, and

∑T
α=1 uα,i = 1,

for any i = 1, τ , where T is the total number of distinct object-types.
In order to make a decision, we proposed to characterize every object-type, at any instant

τ , by a weighted frequency [30, 31]

fα(τ ) =
∑τ

i=1 w(i)uα,i∑τ
i=1 w(i)

(6)

where w(i) is an appropriate weighting function. To surpass the shortcomings of other
functional self-organization mechanism [11–13], we used for the first time [30, 31] a recursive
defined memory that allows a whole history record. The proposed weighting function is
[30, 31]

w(i) = 1

ri−1
. (7)

Using (7) and (6), one obtains

fα(K) = rK−1 r − 1

rK − 1

K∑
i=1

uα,i

ri−1
. (8)

Based on (8), it can be seen that if r � 1 then the contribution of the τ th step (for τ � 1)
to current swapping decision becomes insignificant [30, 31]. Therefore, only the most recent
steps contribute to decision or, the system has a short-type memory. The limit case r = 1
corresponds to an infinite length of the memory and equally weighted events. The case when
r< 1 exacerbates the contribution of the steps with τ � 1 and diminishes the contribution
of the most recent ones [1, 20]. Present study addresses only the case r> 1. For example,
applying the weighting function (7) to string (3) one obtains fa(τ)

fb(τ)
= 1

r5 < 1, which shows that
the RLA do not allow swapping if an a-type object is transported and it encountered a b-type
object.

3. Overview of the analytical and numerical results on functional self-organization
based on weighted memory algorithm

The particular form (7) of the weighting function was chosen in order to simplify the
computational task. Let us observe that every time we compare two weighted frequencies the
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denominator of (7) is the same and it can be omitted. Therefore, to make a decision, it is
sufficient to compute at any instant the sum [31]

Sn
α =

τ∑
i=1

(uα,i )nw(i) (9)

where (uα,i )n is the binary digit corresponding to the ith place in the α string at the nth iteration
step. Next step requires a new evaluation of the sum

Sn+1
α =

τ+1∑
i=1

(uα,i )n+1w(i) (10)

where the following shifting rule takes place:

(uα,i)
n+1 = (uα,i−1)

n for i � 2
(11)

(uα,1)
n+1 =

{
1 if the object left in the current site is ofα-type
0 otherwise.

Using (11), (10) and (9) it results that

Sn+1
α = 1

r
Sn
α + (uα,1)

n+1w(1). (12)

There is no loss of information using the proposed form (7) of the weighted memory function
because the recurrent sum (12) is a closed relationship. Moreover, to compute and compare the
two sums, Sn+1

α and Sn
α , at a give instant, we need only two memory cells for every object-type:

one for the old sum Sn
α and another for the new entry, un+1

α,1 [30, 31].

3.1. Machine error limit of first-order recurrent memory

Despite its simplicity, the first-order recurrent schema (12) does not allow a truly infinitely
long path record. This limitation is given by the internal finite digit representation of any real
number [30, 31]. Indeed, let us consider two different strings

sα(τ ): uα(1)uα(2) · · ·uα(τ )
(13)

sβ(τ ): uβ(1)uβ(2) · · ·uβ(τ )

with identical digits on their most significant τ 0 places (uα(τ ) = uβ(τ ), for i = 1, . . . , τ0).
The maximum value of the difference between the two corresponding weighted frequencies
is

max |fα(N) − fβ(N)| = max

∣∣∣∣∣ rN−1 r − 1

rN − 1

N∑
i=1

(uα(i) − uβ(i))
nw(i)

∣∣∣∣∣
= rN−1 r − 1

rN − 1

N∑
i=τ0+1

1

ri−1
� 1

rτ0
. (14)

The two different memorized strings will be considered numerically identical if
max |fα(N) − fβ(N)|� ε, where ε is the computer internal error due to the finite digits
internal representation of any real number. Based on the above formula, we may conclude
that, in fact, the first order recurrent schema works with a finite effective memory whose length
is given by

τ0 = − ln ε

ln r
. (15)

The dependence of the effective memory length on the memory radius (r) and the numerical
error is shown in figure 1.
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Figure 1. The dependence of the effective memory length on memory radius r and internal
numerical error ε. As r approaches unity (infinite memory length with equally weighted records)
the effective memory abruptly increases but remains finite due to finite numerical error of any real
number internal representation.

3.2. The influence of multiple-valued mapping of Markov chains on local decisions

The main reason to change the Deneubourg’s algorithm [11–13] was that, in order to decide
about swapping, the RLAs have to consider the whole history and not an arbitrarily truncated
Markov chain. Instead of a short-term memory of m steps [11–13], which records what was met
in each of the last m steps, we consider that every RLA has a recursive cumulative memory for
every object-type. Every microscopic-based model needs an appropriate global (cumulative)
quantity over the whole (finite or infinite) record. In Deneubourg’s model, the global measure
was simply the mean of the binary record. We considered here, as a more realistic solution, a
weighted mean value. However, the global measure over the memory record is not a univocal
application from the (finite or infinite dimensional) vector space of the records to real numbers.
It is possible to obtain the same global measure for different records and, therefore, to make
bad decisions. To evaluate the probability of a bad decision, let RN be the real N-dimensional
vector space andB = (e1, . . . , eN ) its canonical basis. A random Markov chain of length N is a
vector of theRN space and can be written usingBbasis. Every algorithm for the functional self-
organization maps the vector spaceRN into theR. A bad swapping decision appears when two
different strings from RN are mapped into the same point in R. Let us consider two different
strings s1 and s2 ∈ RN . Using (6), we found the number of different strings for a given memory
radius r such that f s1

α − f
s2
β = 0, where α and β refer to the object-types under the swapping

decision. The above condition reduces to P
(

1
r

) = a0 + a1
1
r

+ · · · + aN
1

rN−1 = 0, where ak are
the polynomial coefficients of the associated N-step Markov chain. In the binary case, the
only possible values for these coefficients are ±1. Based on the Fermat theorem, the above
restriction reduces to P(0) · P(1) < 0 or, in a more useful form, a0(a0 + a1 + · · · + aN) < 0.
For an even number of coefficients N = 2k the number of different coefficients determine the
number of different strings which can be confounded, namely S = ∑k−1

j = 0 C
2k−j

2k . For an odd

number of coefficients, N = 2k+ 1, this number becomes S = ∑k−2
j=−1 C

2k−j

2k+1 . Based on above
estimations, we found that the probability to make a bad decision is p < 10−5 for τ = N > 10.
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3.3. The convergence of the algorithm

At the theoretical level, the main question regards the convergence of the functional self-
organization algorithm. Convergence means that the long time dynamics displays the desired
goal, namely realizes objects’ sorting in order to form some desired patterns (clusters, stripes,
chess-like board, etc.) [31].

First, we prove the necessary convergence condition in order to start the aggregation of
identical object-type clusters. To this purpose, let us consider, without any loss of generality,
that initially an RLA had met an a-type object and picks it up. Then, let us suppose that
the RLA moved through a field entirely occupied by the b-type objects and, after τ steps,
it met again an a-type object. The less favourable memorized string for the a-type object

is ua(τ ) :

τ︷ ︸︸ ︷
100 · · ·0, where the last entry indicates that the RLA had met only one a-type

object. The corresponding string for the b-type objects is ub(τ ) :

τ︷ ︸︸ ︷
011 · · ·1. The necessary

condition to put down the carried a-type object in the neighbourhood of the last a-type object
encountered is fa(τ ) � fb(τ ), which, using (6), can be written rτ+1 − 2rτ + 1 � 0. This
relationship is fulfilled if and only if r ∈ [1, r0,τ ) ∪ (2,∞), where r0,τ is the root of the
equation rτ+1 − 2rτ + 1 = 0, in (1, 2) interval. Therefore, even in the less favourable case, it
is possible to choose an appropriate memory radius value r in order to form a cluster with two
identical objects. Once this cluster has been formed, it starts to grow. On the other hand, the
algorithm converges for any concentration of the objects and this is one of the most important
achievements of the present model.

Next question is: how long will it take to reach the less probable configuration, or,
equivalently, which is the probability to occur the associated Markov chain? To estimate the
probability we used a mean field approach. We assumed that the probability to find an object in
a given lattice site is not determined by the other objects’ positions. Therefore, the probability
to find an object, say of a-type, can be approximated by pa = ca

v
V

= ca
4
V

, where ca = Na

N
is

the concentration of the a-type objects, v is the ‘volume’ (area) of the neighbourhood and V

is the lattice ‘volume’ (area). Let pa,i be the probability to find i ∈ {0, 1, 2, 3, 4} a-type
objects in the neighbourhood of an arbitrary site. Under above assumptions, an approximation

of this probability is given by the binomial distribution pa,i =
( i

Na

)
pi
a(1 − pa)

Na−i . Under

these conditions, the mean number of the a-type objects in the neighbourhood of an arbitrary
lattice site is given by

ξ̄a =
∑4

i = 0 ipa,i∑4
i = 0 pa,i

=
∑4

i = 0 i
( i

Na

)
pi
a(1 − pa)

Na−i

∑4
i = 0

( i

Na

)
pi
a(1 − pa)Na−i

. (16)

The above relation allows to write the mean probability to find an a-type object in the
neighbourhood of an arbitrary lattice site in the form p̄a = 1

4 ξ̄a , and for the b-type objects
p̄b = 1

4 ξ̄b = 1
4 (4− ξ̄b) = 1−p̄b. In order to obtain the probability to realize the less favourable

path we make the following assumptions: (1) jumps are independent events (random walk),
(2) the first object encountered by RLA was of a-type with the probability Na

N
and picked it

up, (3) the RLA moves τ−2 steps through the lattice finding only b-type objects, (4) finally,
the RLA meets another a-type object. Using all of the above conditions, one obtains

pmin = Na

N
(1 − p̄a)

τ−2p̄a (17)
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Figure 2. Initial random configuration (a) in a 50 × 50 two-dimensional periodic lattice containing
Na = Nb = 100 objects to be sorted by 30 RLAs. Clusters appear for r = 1.1 after 2.5 × 105

steps (b), r = 1.3 after 6.5 × 105 steps (c) and r = 1.5 after 106 steps (d ). This fact indicates that
the memory radius is an important control parameter in order to optimize numerical computation.

where the first factor is taken because the RLA met an a-type object at the first step with the
probability Na

N
and that object is then carried τ−1 steps until another a-type object is found.

It follows that the maximum number of steps which ensures convergence is

Nmax = 1

pmin
= N

Na

1

p̄a(1 − p̄a)
τ−2

. (18)

To minimize the computational time, the memory radius r must change during simulations.

3.4. Numerical results on cluster aggregation

We performed numerical simulations using the memory function based on the weighted
relative frequencies (8). The most significant control parameter in our model is the memory
radius r. All the present results were obtained using a constant value for the memory radius
during computations. Numerical simulations confirmed our theoretical result regarding the
convergence of the algorithm. Moreover, using different values for the memory radius r we
found that the average number of Monte Carlo timesteps required to achieve the final sorting
stage increases if r increases (see figure 2). Intuitively this result seems to be correct because
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Figure 3. The stochastic functional self-organization mechanism successfully builds clusters even
with a very low concentration of the distributed objects. The environment is a 50 × 50 periodic two-
dimensional lattice with 30 RLAs. A 10% concentration of a-type objects is randomly distributed
(a). If the memory radius is r = 1.1, then the final aggregation stage is reached after 2.5 × 105

Monte Carlo timesteps (b). When the initial random concentration is 1% (panel c) and the memory
radius r = 1.3 the required conventional time is 6.5 × 105 (see panel d ). Finally, an initially
random distribution of the objects with 0.1% concentration and r = 1.5 requires 106 conventional
timesteps to reach the final aggregation stage. These results indicate that the concentration of the
objects is another important parameter when we deal with optimization problem.

a high value of the memory radius means a short-range temporal correlation between the
recorded bits. This kind of memory is definitely helpful at the incipient stage of aggregation
and allows a fast separation of small clusters. Unfortunately, keeping a high value for the
memory radius slows down the aggregation of bigger clusters because the short-range memory
correlations cannot cover the increasing correlation pattern.

The convergence of the stochastic functional self-organization algorithm based on
weighted memory function was also tested for different values of the object concentrations.
We found that the algorithm converges even for as low concentrations as .1% (see figure 3).

Based both on theoretical results we proved and numerical simulations, we can say that
the capability of the above described multirobotic network to perform the sorting process
manifests for any r > 1 and the convergence speed (the minimum number of Monte Carlo
conventional steps required in order to reach the final steady state sorting configuration)
depends sensibly on r.

4. Local and global measures of the organization degree

The computation with the stochastic functional self-organization based on weighted memory
algorithm requires a well-defined criterion in order to stop the simulations. On the other
hand, in order to classify the pattern and/or to compare the aggregation velocity for different
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memory radius values r and/or to extract parameters of the phenomenologicalmodel (diffusion
coefficient, mean swapping frequency, mean elapsed time between swapping, etc) we need
quantitative measures of the aggregation process. One possibility is to use a locally orientated
criteria. The ability of the RLAs to reduce global environment entropy can be traced to their
primitive capacity to perceive complexity locally and behave accordingly. Complexity and
entropy are closely related concepts. While entropy can be reliably measured on a global
scale, it is difficult to find an adequate measurement of entropy on a local scale [41]. The local
orientated measure of complexity uses a nine-cell neighbourhood in the rectangular lattice.
The complexity of the neighbourhood is taken as the number of faces that separate cells of
different object types. The RLA uses the locally measured complexity to direct their physical
motion and their object manipulation as well as to decide, statistically, to stop the aggregation
process. The second possible approach refers to some globally defined functions (measures)
that are not available to every RLA computation. The second method is more adequate to
extract some quantitative measures about the aggregation stage.

The present study addresses the usefulness of global measures called features associated
with textures [22]. The texture analysis using features considers that texture-context
information is contained in the overall spatial relationship between the gray tones. Let p(i, j)
be the normalized matrix of relative frequencies with which two neighbouring resolution cells
separated by distance d occur on the image, one with gray tone i and the other with gray tone
j. The matrix of gray-tone spatial-dependence frequencies depends on angular relationship
between the neighbouring cells. In the following, we will refer only to horizontal gray-tone
spatial-dependence matrix but it is easy to obtain, in the same way, any other matrix. To
characterize simple textures only three global features are needed:
The angular second-moment feature is a measure of homogeneity of the image. In a
homogeneous image this feature has a great value and decreases if the texture becomes
less homogeneous (texture with different clusters)

f1 =
Ng∑
i=1

Ng∑
j=1

p(i, j)2 (19)

where Ng is the number of gray tone in the texture.
Contrast is the measure of amount of local variations present in the image

f2 =
Ng−1∑
n= 0

n2


 ∑

|i−j | = n

p(i, j)


 . (20)

Correlation is a measure of gray-tone linear dependence in the image

f3 = 1

σxσy


 Ng∑

i=1

Ng∑
j=1

ijp(i, j) − µxµy


 (21)

where µx,µy are the mean and σx, σy are the standard deviations of the vectors px(i) =∑Ng

j=1 p(i, j) andpy(j) = ∑Ng

i=1 p(i, j), respectively. In a noisy sample there is no correlation
between the gray-tones and therefore the correlation features has a low value.

4.1. Analytical evaluation of the relevant features for a completely sorted
two-dimensional picture

In the following, the environment is a periodic two-dimensional lattice and only three-object
type, denoted by letters a, b and φ (empty sites), respectively, were considered. Let Nint(i)
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Figure 4. Symmetric cluster of a-type object (grey)
in a two-dimensional rectangular lattice. This structure
was observed, as final steady state, in numerical
simulations. Therefore, it was considered the most
probable configuration at the end of the aggregation
process. Based on this configuration, the values for the
features were derived.

be the number of the lattice sites inside the i-type objects’ clusters and Next(i) the number of
the lattice sites on the border of the same cluster (see figure 4). Taking into account only the
nearest neighbour interaction, a rough estimation of the spatial-dependence matrix entries is

p(i, i) = 1

N
(2Nint(i) + (Next(i))x) (22)

where N is a normalization factor and (Next(i))x is the number of the lattice sites on the
border of the i-type clusters in the horizontal direction. For the symmetric clusters, this
number can be approximated by (Next(i))x ≈ (Next(i))y = 1

2Next(i). To simplify further
evaluations, we adopt a numerical equivalence for the object-types (a, b, φ) and the set (1,
2, 3) and we assume that the greatest occupation number belongs to φ object-type (empty
site). In the complete sorting stage, the a-type objects’ cluster and the b-type objects’ cluster
have no common lattice site. Therefore, taking into account the symmetry of the spatial-
dependence matrix, it follows p(1, 2) = p(2, 1) = 0, p(1, 3) = p(3, 1) = 1

N
(Next(1))x

and p(2, 3) = p(3, 2) = 1
N
(Next(2))x , respectively. Using (22) and above symmetry-related

relationships, the corresponding matrix of symmetric pattern (see figure 4) is

(P ) = 1

N




2N(1) − 3
2Next(1) 0 1

2Next(1)

0 2N(2) − 3
2Next(2) 1

2Next(2)
1
2Next(1) 1

2Next(2) 2N(3) − 3
2Next(3)


 (23)

where N = 2(N(1) + N(2) + N(3))− 1
2 (Next(1)+ Next(2))− 3

2Next(3). The boundary length
conservation writes Next(3) = Next(1) + Next(2) and the conservation of the objects’ number
gives N(1)+N(2)+N(3) = NxNy , where Nx (Ny) is the total number of horizontal (vertical)
lattice sites. Using above conservation rules, it results that

N = 2
[
NxNy − (Next(1) + Next(2))

]
. (24)

Let us denote by ci = N(i)

NxNy
the concentration of the i-type object. If the cluster dimension

N(i) is big enough then a rough estimation of the number of the lattice sites on its border is
Next(i) ≈ α

√
N(i), where α ∈ (0, 1) is a constant. Substituting the above relationship into

(24) it can be obtained

N ≈ 2NxNy

[
1 − α

√
N(1) +

√
N(2)

NxNy

]
= 2NxNy

[
1 − α

(√
c1

NxNy

+
√

c2

NxNy

)]
. (25)
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Substituting (25) into (23) and using the notation y = α√
NxNy

it results that

(P ) = 1

1 − y
(√

c1 +
√
c2

)


c1 − 3

4y
√
c1 0 y

2

√
c1

0 c2 − 3
4y

√
c2

y

2

√
c2

y

2

√
c1

y

2

√
c2 c3 − 3

4y
√
c3


 (26)

where ci are related by c1 + c2 + c3 = 1. According to the definition (19), and using the matrix
(26), one obtains

f1 =
3∑

i=1

3∑
j=1

p(i, j)2 = 1[
1 − y

(√
c1 +

√
c2

)]2

×
[
c2

1 + c2
2 + c2

3 − 3

2
y

(
c

3
2
1 + c

3
2
2 + c

3
2
3

)
+ y2

(
17

16
c1 +

17

16
c2 +

9

16
c3

)]
(27)

In the same way, using (20) it results that

f2 =
2∑

n=0

n2


 3∑

i,j;|i−j | = 0

p(i, j)


 = y

(
2
√
c1 +

√
c2

)
1 − y

(√
c1 +

√
c2

) . (28)

The corresponding reduced matrices are:

px = 1

1 − y
(√

c1 +
√
c2

)
×

(
c1 − y

2

√
c1 c2 − y

2

√
c2 c3 − 3y

2

√
c3 + y

(√
c1 +

√
c2

))
(29)

pT
y = 1

1 − y
(√

c1 +
√
c2

)
×

(
c1 − y

2

√
c1 c2 − y

2

√
c2 c3 − 3y

2

√
c3 + y

(√
c1 +

√
c2

))
where the superscript T means transposition. It follows from (29) that the mean value and
standard deviation are given by

µx =
3∑

i=1

ipx(i) = 1

1 − y
(√

c1 +
√
c2

) [
c1 + 2c2 + 3c3 +

y

4

(
5
√
c1 + 6

√
c2 − 9

√
c3

)]

σ 2
x =

3∑
i=1

(i − µx)px(i) =
3∑

i=1

i3px(i) − (µx)
2

= 1[
1 − y

(√
c1 +

√
c2

)]2

[ (
1 − y

(√
c1 +

√
c2

)) [
c1 + 2c2 + 9c3 (30)

+
y

4

(
17

√
c1 + 14

√
c2 − 27

√
c3

)] −
[
c1 − 2c2 + 3c3

+
y

4

(
5
√
c1 + 4

√
c2 − 9

√
c3

) ]2]
.

A major, realistic, simplification of (30) can be obtained by considering y � 1 (low object
concentration) and c1 = c2 = c (equal concentration of objects to be sorted). Finally, the
three principal features mentioned above can be written

f1 ≈ 1 − 4c + 6c2 + y

[
4
√
c
(
3c2 − 2c + 1

) − 3

2

(
c

3
2 + (1 − c)

3
2

)]
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f2 ≈ 5y
√
c
(
1 + 2y

√
c
)

(31)

f3 = c(5 − 9c) + y/4
[
21

√
c − 27

√
1 − 2c − 6(1 − c)

(
8(4 − 3c)

√
c − 9

√
1 − 2c

)]
c(5 − 9c) + y/4

[−95
√
c + 27(1 − 2c)

√
1 − 2c + 238c

√
c − 144c2

√
c
] .

If the lattice is big enough then y → 0 and, therefore

f1 ≈ 1 − 4c + 6c2 f2 ≈ 0 f3 = 1. (32)

The values (31) and (32) of the features were obtained for the final stage of the aggregation
process.

4.2. Analytical evaluation of the relevant features for a noisy two-dimensional picture

In order to complete the analytical description of aggregation process by global features we
also evaluate the values for the initial (noisy) configuration. To this purpose, let us denote by
N(i, j) the number of i–j nearest neighbour sites. According to our previous assumptions

N(1, 1) = N(2, 2) = 0 N(1, 2) + N(1, 3) = 2N(1)
(33)

N(2, 1) + N(2, 3) = 2N(2) N(3, 1) + N(3, 2) + N(3, 3) = 2N(3).

It is straightforward that the interface of φ-type objects with the other object-types gives
N(3, 1) + N(3, 2) ∝ √

N(3). Due to high symmetry of the noisy configuration, the following
relations exist: N(1, 2) = N(2, 1) = N12, N(1, 3) = N(3, 1) = N13, N(2, 3) = N(3, 2) =
N23. Based on (33) and above relationships, the non-zero matrix elements are:

N12 = N(1) + N(2) − β

2

√
N(3) N13 = N(1) − N(2) +

β

2

√
N(3)

(34)
N23 = −N(1) + N(2) +

β

2

√
N(3) N33 = 2N(3) − β

√
N(3)

where β ∈ (0, 1) is a constant. Therefore, the normalized matrix of the noisy pattern is

(P ) = 1

N




0 c1 + c2 − β

2

√
c3

NxNy
c1 − c2 + β

2

√
c3

NxNy

c1 + c2 − β

2

√
c3

NxNy
0 −c1 + c2 + β

2

√
c3

NxNy

c1 − c2 − β

2

√
c3

NxNy
−c1 + c2 + β

2

√
c3

NxNy
2c3 − β

√
c3

NxNy


 (35)

where N = 2Nx × Ny is a normalization factor. If the lattice environment is large enough
then (35) becomes

(P ) = 1

N


 0 c1 + c2 c1 − c2

c1 + c2 0 −c1 + c2

c1 − c2 −c1 + c2 2c3


 . (36)

Using (36), one obtains the reduced matrix px = (c1 c2 c3), with the following mean and
dispersion:

µx =
3∑

i=1

ipx(i) = c1 + 2c2 + 3c3

σ 2
x =

3∑
i=1

(i − µx)px(i) =
3∑

i=1

i2px(i) − (µx)
2 (37)

= c1 + 4c2 + 9c3 + (c1 + 2c2 + 3c3)
2.
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Mont-Carlo iteration steps (x1000)

f1

f
2

f3

5 10 15 20 25 30

Figure 5. Qualitative picture of the environment (upper panel) and the corresponding quantitative
measures (lower panel). Different snapshots of the two-dimensional lattice are uniformly sampled
every 5000 Monte Carlo simulation steps (upper panel). The lower panel shows the time-
dependence of the three features. Their initial and final values are in a very good agreement with
the theoretically predicted results. The environment is a two-dimensional periodic lattice with 100
× 100 sites and 10% black objects’ concentration. The task was performed by 40 RLAs with
memory radius r = 1.1.

In the limit case β
√

c3
NxNy

→ 0, the principal features are

f1 ≈ 6c2 − 4c + 1 f2 ≈ 2c f3 ≈ 4 − 9c

5 − 9c
. (38)

4.3. Applications of the feature method to stochastic functional self-organization

Numerical simulations demonstrate that the above-defined features are sensitive to aggregation
stage and offer a quantitative meaning of this fuzzy concept. In our numerical experiment a
two-dimensional periodic lattice was considered. The memory radius r was fixed. Starting
the aggregation process with an initially noisy configuration we recorded the picture of the
lattice (upper panel of figure 5) and the corresponding values of the features (lower panel of
figure 5). The purpose of the present computation is twofold. First, we checked that the initial
and asymptotic values of the features are in a very good agreement with the theoretically
predicted ones. Second, the numerical simulations proved that, for a fix value of the memory
radius, there is a limited temporal domain that ensures a very fast change in the feature values
followed by a long lasting temporal domain of clusters’ shape adjustment. Based on numerical
simulations performed with different memory radius values we may conclude that it is more
advantageous, in order to reduce the computational effort, to start with a high value of the
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memory radius. A high value of the memory radius means a very abrupt decrease of the
features and a rapidly slowing down of the algorithm. If the simulation continues with such a
high value of the memory radius the system needs a long computation to reach the steady state.
Therefore, despite their very fast initial change in the feature values the system will slow down
rapidly. On the other hand, a low memory radius will determine a slow change of the features
but the end of the linear region is more close to the final steady state. Above observations
are the basic ingredients for our optimization algorithm. Our optimization procedure searches
for an appropriate dynamic change of the memory radius during the numerical simulation in
order to balance the high speed of the feature change (for high values of memory radius) with
the lowest quasi steady state of the linear region (for the low memory radius values). The
optimization rule for stochastic functional self-organization exceeds the goal of the present
paper and will be published elsewhere [33].

5. Conclusions

The present paper provides an overview of the main theoretical and numerical results
concerning the stochastic functional self-organization mechanism (section 3) [1, 20, 30, 31].
The proposed distributed sorting algorithm is less efficient than a hierarchical organized
system, but its great advantage is that it does not require any map of the environment, global
representation or supervisor.

The paper proposes three quantitative global measures of organizational degree of a given
two-dimensional environment (texture). The proposed quantitative measures are sensitive to
spatial organization of the environment. We evaluated the initial values of the features for noisy
configuration (random distribution of the objects) and totally sorted configuration with sym-
metric clusters. Our theoretically evaluated limits of the features are in very good agreement
with the computational results. The dynamics of the proposed features (see figure 5) indicates
that the speed of feature variation strongly depends on the memory radius r (control parameter).
Our idea of optimization of the stochastic functional self-organization mechanism is as follows.
First, an extensive numerical survey of the feature dynamics is necessary. The goal is to obtain
the landscape of feature dependence on the number of iteration steps (time) and the memory
radius (control parameter). Second, using the 3D landscape numerically derived, it is possible
to find an optimum path through the landscape according to a given optimization criterion. In
our case, minimization of the aggregation time could be an appropriate optimization criterion.

The present algorithm is based on first order recurrent memory. This particular fact
imposes a very simple, not trivial, functional form of the weighting function. Our preliminary
results indicate that a second order, non-monotonic, memory function is a more realistic model
for human pattern analysis.
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